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Abstract 11 

The influence of climate on marine populations is important for predicting stock abundance of 12 

marine fishes, and has led to increasing interest in environment-based forecasts (EBFs) for 13 

harvest management. While some climate indices have proven useful for explaining fluctuations 14 

in Pacific salmon stock abundance, there have also been sudden failures of EBF models. I 15 

analyzed temporal patterns in prediction skill for a variety of climate and ecosystem indicators as 16 

predictors of marine survival for a coastal coho salmon stock by computing prediction skill for 17 

29 climate and ecosystem indices across multiple time scales to explore patterns of skill across 18 

time. Results demonstrate that predictive skill of EBF models is often ephemeral, arising and 19 
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falling suddenly across time. This behavior can be explained both on a statistical basis and as a 20 

consequence of complex interactions between climate, ecosystems, and populations involving 21 

both climate regime shifts and ecosystem phase transitions. Forecast failures are problematic for 22 

traditional forecast-dependent harvest management approaches. Solutions for this problem may 23 

include improved forecast models and improved climate and ecosystem indicators, but 24 

developing management systems that are robust to forecast uncertainty would provide a more 25 

reliable response to expected rapid ecosystem changes in response to climate. 26 

Keywords  27 

climate, environment-based forecasts, salmon, Northeast Pacific, prediction, fishery management 28 

 1  Introduction 29 

I begin with some remarks regarding Bill Peterson’s role in this work. I had an office two doors 30 

down from Bill for 20 years, and enjoyed many hallway conversations about the role of 31 

biological oceanography in understanding and forecasting salmon population dynamics. Bill and 32 

I had common roots in field-based ecology, but my career had shifted toward quantitative 33 

analysis (population dynamics, ecosystem modeling, and ecological statistics), and we had 34 

perhaps more arguments than we should have about correlation, causation, and how to reliably 35 

identify relationships from ecological time series. This manuscript arose from discussions of the 36 

relevance of short (10-15 year) biological time series for forecasting salmon abundance and the 37 

stability of relationships in environment-based forecasts (EBFs). Two key questions here are 38 

first, whether predictive relationships between environmental indicators and salmon populations 39 
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are stable through time, and second, how long a data series is necessary to provide reliable 40 

forecasts. To this purpose, I present an analysis of temporal patterns in prediction skill for a 41 

variety of climate and ecosystem indicators as predictors of marine survival for a coastal coho 42 

salmon stock. The intent of this work is neither to provide a good forecast nor to select the best 43 

indicators to use in a forecast, but rather to explore the problems of selecting indicators to use in 44 

EBFs, with a focus on patterns of forecast skill across time. 45 

 1.1  Environment-Based Forecasts for Pacific Salmon 46 

The influence of climate (both short-term fluctuations and long-term trends) on marine 47 

populations is important for predicting stock abundance of marine fishes (Brander 2015), and the 48 

recognition of this issue has led to increasing interest in applying ecosystem indicators in harvest 49 

management (e.g., Cury and Christensen 2005; Jennings 2005). While long-term regional and 50 

local physical climate indices have proven useful for explaining fluctuations in Pacific salmon 51 

stock abundance (Scarnecchia 1981; Nickelson 1986; Holtby and Scrivener 1989; Beamish and 52 

Bouillon 1993; Hare and Francis 1995; Mantua et al. 1997; Pearcy 1997; Anderson 2000; Cole 53 

2000; Botsford and Lawrence 2002; Koslow et al. 2002; Logerwell et al. 2003; Lawson et al. 54 

2004; Scheuerell and Williams 2005; Rupp et al. 2011; Burke et al. 2013; Malick et al. 2015; 55 

McCormick & Falcy 2015), there have been few opportunities to examine the long-term stability 56 

of relationships among ecological indicators and fish populations. Recent measurements of 57 

biological ecosystem properties show strong short-term relationships with salmon marine 58 

survival (Peterson et al. 2006; Peterson et al. 2014), but it is unclear how stable these 59 

relationships will be across different climate regimes and ecosystem phases. 60 
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It has long been recognized among quantitative scientists that fish population dynamics are 61 

controlled by non-stationary properties arising from shifts in biological, physical climate, and 62 

management processes (Walters 1987). Climate-driven regime shifts were first recognized as an 63 

issue for Pacific salmon in the 1990s (Francis & Hare 1994; Hare & Francis 1995; Beamish et al. 64 

1998) and more recent work has led to more detailed understanding of processes and methods for 65 

recognizing regime shifts (Peterson & Schwing 2003; Schwing et al. 2003; Overland et al. 2008; 66 

Irvine & Fukuwaka 2011; Sydeman et al. 2013). Similarly, there has been a recent explosion in 67 

literature related to ecosystem phase shifts in marine systems, due either to biological complexity 68 

or to physical forcing (Duffy-Anderson et al. 2005; Daskalov et al. 2007; Scheffer et al. 2009; 69 

Litzow et al. 2019). Beginning in the 1990s, technology has allowed increased attention to the 70 

relationships between climate processes and marine ecosystems at global and regional scales. For 71 

the North Pacific, this led to the development of regional ocean climate indicators including the 72 

Pacific Decadal Oscillation (PDO – Mantua et al. 1997), and later the North Pacific Gyre 73 

Oscillation (NPGO – Di Lorenzo et al. 2008). 74 

Despite this knowledge base, non-stationarity has rarely been been incorporated into predictive 75 

models for salmon. The only instance of explicit recognition of regime shifts in a salmon 76 

management forecast is that for Oregon Coast Coho Salmon, where in 2009 an environment-77 

based forecast model was retrospectively modified to incorporate an indicator variable to account 78 

for the 1977 regime shift (PFMC 2010); this model worked well for a short time, but begs the 79 

question of how future regime shifts could be accounted for in forecasts (Rupp et al. 2011). 80 

Other models have incorporated regime shifts implicitly by using decadal-scale climate 81 

indicators (especially the PDO) as proxies for regime shifts, but these models have also suffered 82 
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from non-stationarity in the relationship between these proxies and salmon production, perhaps 83 

related to changes in coupling of variables in the climate system (Kilduff et al 2015, Joh & Di 84 

Lorenzo 2017). 85 

 1.2  History of Coho Salmon Forecasts 86 

Salmon EBFs have a long history, and an only slightly shorter history of failures. Initially, 87 

salmon management forecasts were based strictly on stock-recruit relationships (e.g., Ricker 88 

1954). The relationship between coho salmon and ocean conditions began to be recognized in the 89 

1970s, starting with wind-driven upwelling (Gunsolus 1978; Scarnecchia 1981; Nickelson 1983). 90 

Shortly thereafter, this predictive relationship broke down, leading to the addition of ocean 91 

temperature as a covariate (Nickelson 1986). This relationship with upwelling and ocean 92 

temperature was adopted by the Pacific Fishery Management Council (PFMC) for coho salmon 93 

stock forecasts starting in 1994, with decreasing explanatory value until the model was 94 

abandoned in 2008, then resurrected in 2009, but with the addition of an artificial “regime index” 95 

to account for the model’s lack of fit during the 1990s (history summarized by Rupp et al. 2011). 96 

In the interim, a number of different EBF models were proposed, notably a multivariate model 97 

based on four ocean indicators (Logerwell et al. 2003), one based on freshwater indicators 98 

(Lawson et al. 2004), and most recently a multivariate ensemble predictor using a wide variety of 99 

indicators (Rupp et al. 2011). The last model was adopted by PFMC in 2011 for forecasting 100 

Oregon Coast naturally-produced coho salmon, with somewhat mixed results (PFMC 2019, 101 

Table III-1). 102 
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 1.3  Salmon Harvest Management 103 

To understand the role of forecasts in harvest management, a brief introduction to the harvest 104 

management process is necessary. Along the west coast of North America, salmon are 105 

commercially harvested from central California north through the Bering Sea, with much 106 

national, regional, and stock-specific variation in the details of management. However, the basic 107 

process is similar in all regions: long-term escapement goals are set by regional management 108 

bodies as a balance of economic return and conservation considerations, then an annual 109 

management cycle sets annual harvest limits for mixed-stock ocean fisheries and terminal (bay 110 

and river) fisheries. The typical annual cycle proceeds in a number of steps (e.g., PFMC 2012): 111 

1) A pre-season recruitment forecast is prepared; 2) from this, annual catch limits are set based 112 

on optimum yield considerations incorporating harvest and conservation goals and current data 113 

on stock abundance and condition; 3) fishing limits (combinations of season and area openings 114 

and other stock-specific regulations) are established; 4) for some stocks, in-season monitoring is 115 

conducted and forecasts updated, leading to revised fishing limits. Recruitment forecasts are 116 

central to this process, and are conducted with a variety of statistical models, including stock-117 

recruit models, sibling regressions (predicting older age group abundance based on previous 118 

returns of younger age groups in the same cohort), environmental indicator regressions, or 119 

combinations of the above (e.g., PFMC 2019). 120 

 1.4  Example: Coastal Coho Salmon 121 

To illustrate some of the problems encountered in salmon EBFs, I chose to analyze predictions 122 

for a single example coho salmon stock: the Oregon Production Index hatchery-produced (OPIH) 123 
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stock, which includes hatchery-produced coho salmon primarily from the Columbia River and 124 

Oregon coast (PFMC 2019). This stock was chosen for two reasons: it has a simple age-125 

structure, with adults returning primarily at age 3, and it is composed of hatchery fish with 126 

smolts released near the time of ocean entry. These two characteristics simplify the analysis in 127 

that variability in freshwater rearing is virtually eliminated, meaning that ocean-related factors 128 

should be the main drivers of variation in returns. It is also an important stock for commercial 129 

harvest, and not of conservation concern other than through its effects on other stocks.  130 

The life-cycle of these fish begins with spawning in the winter (year one), then hatchery rearing 131 

for about 1-1/2 years after which pre-smolts are released and migrate to the ocean in spring of 132 

year two, feeding migration in the ocean from summer of year two to autumn of year three, then 133 

a return migration to their natal hatchery. (A small proportion of males returns to freshwater in 134 

year 2, these have been ignored in this analysis.) Ocean harvest targets returning adults in the 135 

summer and fall of year three. Thus, the life cycle is split about evenly between freshwater and 136 

ocean phases. Most ocean mortality (and its variation) is believed to occur in the first several 137 

months of ocean life (Pearcy 1992), so ocean-related environmental indicators used here are for 138 

the calendar year of ocean entry. 139 

 2  Methods 140 

The analysis consists of computing the forecast skill of log-linear regression models for OPIH 141 

coho salmon marine survival as functions of various climate and ecosystem indicators at a 142 

variety of time scales, then assessing temporal patterns in the skill for each regressor. Complete 143 

data sets and R-language (R Development Core Team 2013) scripts to update the data and 144 
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reproduce the analysis are available on GitHub at 145 

https://github.com/tcwain/EphemeralRelationships. 146 

 2.1  Data 147 

Data used consists of publicly-available time series of coho salmon abundance, climate 148 

indicators (at both North Pacific basin scale and local coastal scale) and biological ecosystem 149 

indicators mainly from the Newport Hydrographic (NH) Line. Data series, abbreviations, and 150 

sources are summarized in Table 1. 151 

 2.1.1  Marine survival 152 

A marine survival index (Figure 1) was computed for each cohort of OPIH coho salmon based on 153 

data for total hatchery smolt releases for all stocks in the OPI area and estimated total pre-harvest 154 

adult recruitment for those stocks. Reliable data for this calculation is available from 1960 to 155 

2018 (McGie 1984; PFMC 2004; PFMC 2019). The calculation is: 156 

��������� = 
���������

�������
, 157 

where t is the year of ocean entry. Because hatchery salmon are released in-river before smolting, 158 

this ratio includes some river and estuarine mortality, and is thus only an approximate index of 159 

actual marine survival.  160 
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 2.1.2  Climate and ecosystem indicators 161 

I used a number of short- and long-term environmental indices (Table 1) to predict marine 162 

survival of OPI hatchery coho salmon. These included three types of data: regional physical 163 

indices, local physical indices, and biological ecosystem indicators. All data used was indexed to 164 

the year of ocean entry (smolt year) of the OPIH coho salmon cohorts, one year prior to the 165 

return year for the cohort. A wide set of indicators have been used in salmon forecasting (Rupp et 166 

al. 2011; Burke et al. 2013; Peterson and Burke 2013), and from these I selected a number of 167 

indicators that were commonly used and showed some promise in forecasting. At the ocean basin 168 

scale, these were the PDO (Mantua et al. 1997), NPGO (Di Lorenzo et al. 2008), and the Oceanic 169 

Niño Index (ONI – Kousky and Higgins 2007). At the local scale, series include both long-term 170 

climate indicators – coastal water temperature at Charleston, Oregon (CWT), coastal upwelling 171 

index at 45°N (UWI – Bakun 1973) and upwelling spring transition (Logerwell et al. 2003) – and 172 

shorter series of ecosystem indicators derived from the Newport Hydrographic Line studies 173 

initiated by Bill Peterson (Peterson et al. 2014). Most of the long-term climate indicators were 174 

obtained at monthly or finer time periods. For the analysis, these series were transformed into 3-175 

month seasonal averages representing winter (Jan-Feb-Mar), spring (Apr-May-Jun), summer 176 

(Jul-Aug-Sep), and autumn (Oct-Nov-Dec). In addition to spatial scale, these indicators vary in 177 

temporal scale as well, with some (e.g., PDO, NPGO) reflecting decadal-scale climate processes, 178 

while others (e.g., ONI, UWI, CWT) reflect short seasonal to annual scale processes. Thus, 179 

different indicators should be expected to correlate to different scales of variability in population 180 

dynamics. 181 
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 2.2  Statistical Methods 182 

The analysis consisted of fitting univariate linear regression models predicting log-transformed 183 

OPIH coho salmon marine survival as a function of an individual climate or ecosystem indicator 184 

at different time scales. Log-transformations are commonly used for population and survival data 185 

(e.g., Kimura 1988; Koslow et al. 2002) both to stabilize variances and to better represent the 186 

multiplicative nature of survival processes. If survivals are relatively high, this can risk 187 

predictions of survival exceeding 1.0, but here the maximum observed survival was less than 188 

12% (Figure 1) and the predictions calculated never exceeded 1.0. For a data series of length N, 189 

the regression was computed for all overlapping time intervals (moving windows) of length n 190 

(the time scale), where n ran from a lower limit of 5 years to the full series length (N); for each 191 

time scale n, this resulted in a time series of N-n+1 regression fits. This procedure was repeated 192 

for each of the 29 seasonal and annual indicator series in Table 1. Each regression was 193 

summarized by a goodness-of-fit statistic and the regression slope. 194 

There are a number of means of measuring goodness-of-fit for statistical models, including 195 

residual error, various information criteria, and a number of forms of cross-validation. Here, I 196 

use the model skill, which is a relative measure defined as 1 – (prediction error) / (reference 197 

error) (American Meteorological Society 2019). In particular, I used a skill measure based on 198 

“leave-one-out” cross-validation (LOO CV – Borra and Di Ciaccio 2010; Rupp et al. 2011): 199 

���� = 1 −
�� − 1�∑ !̂��� − !�#

$

�� − 2�∑�!̄ − !��$
 200 
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where the sums are over the n data points and Ŷ(i) is the logarithmic-scale predicted value of Yi 201 

from the model with point i left out. The value of this statistic ranges from 1.0 for perfect model 202 

fit, through 0.0 when the model predicts the data mean exactly, to negative values when the fit is 203 

worse than the data mean. In the results here, negative values have been truncated to 0.0 to 204 

simplify visual display; any model with skill <= 0.0 is essentially useless as a predictor. Borra 205 

and Di Ciaccio (2010) note that LOO CV is not the best measure for model selection, but that 206 

does not matter in this application. 207 

Finally, the full set of predictions at all time scales for each indicator were visually summarized 208 

in a “dot” or “bubble” plot with dots proportional to model skill and color-coded to the slope of 209 

the regression relationship. These diagrams provide a detailed tool for diagnosing non-210 

stationarities in the relationships. 211 

As mentioned, a wide variety of EBF models have been used to forecast salmon and other 212 

resources, including linear, quasi-linear and non-linear univariate and multivariate approaches. I 213 

have chosen univariate linear models here because they are computationally fast and easy to 214 

understand. I do not advocate using such simplistic models for forecasting, and use them here 215 

only to illustrate a general problem. Multivariate and non-linear regression models also suffer 216 

from the same problems and will also exhibit ephemeral results, but are more difficult to analyze. 217 

 3  Results 218 

The full analysis (all scales across all years) illustrates a wide variety of patterns in predictive 219 

skill (Supplemental Figures S-1 – S-8). Using the PDO as an example (Figure 2), one sees first 220 

the strong seasonal pattern, with spring (AMJ) and summer (JAS) seasonal means having 221 
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moderate to strong skill across many years, while autumn (OND) means have moderate to strong 222 

skill only before 1994 and winter (JFM) means have only scattered years with moderate to strong 223 

skill, primarily at only short time scales. Next, there are sudden temporal breaks in skill. Notably, 224 

the summer and autumn indices have the highest skill for the years 1975 to 1993, then negligible 225 

(autumn) or only moderate (summer) skill after that; in contrast, the spring PDO had strong skill 226 

with a positive slope in the early 1970s, then negligible skill until the mid-1980s, and increasing 227 

skill with a negative slope after that. Finally, there are patterns of skill with time scale (interval 228 

length). Not surprisingly, at short time scales there are scattered short periods of high skill when 229 

short term fluctuations in the two data sets happen to align. Perhaps more interesting are the 230 

diagonal swaths of strong skill that begin abruptly and are carried forward through time, such as 231 

the fall PDO pattern beginning in 1975 at short (5 to 8 y) scales and continuing until 1993, or the 232 

spring pattern beginning around 2000 at short (7 to 12 y) scales and continuing through at least 233 

2018. These suggest a short-term predictable pattern in the data that arises suddenly and raises 234 

the skill for a number of years.  235 

To compare patterns across indicators, it is easier to focus on results for indicators at a few time 236 

scales. Results are presented at two time scales. First is the variable scale used in practical 237 

forecasts, where models are fitted to all prior data, then updated each year as management 238 

forecasts are made. This scale corresponds to points along the uppermost diagonal in the full-239 

analysis figures (S-1 – S-8). Results at this scale (Figure 3) show a mix of strong and weak 240 

relationships varying through time, with strong relationships lasting for spans ranging from less 241 

than 5 years (e.g., winter PDO and spring and summer UWI) to more than 20 years (e.g., spring 242 

and summer PDO, Logerwell spring transition and winter coastal water temperature), but none 243 
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lasting through the entire data series. Second, I present results at a fixed time scale, focusing on a 244 

relatively short 15-year scale that might be used to evaluate newly-available data series. At this 245 

scale (Figure 4), there are fewer substantial relationships but these tend to have higher skill than 246 

those using all prior data and tend to last for less than 20 years. 247 

 4  Discussion 248 

 4.1  Ephemeral Relationships 249 

When predictive skill of the regression models is viewed across time (Figures 3 and 4), perhaps 250 

the most striking feature is that for any predictor, skill can arise suddenly and can disappear 251 

suddenly. This means that the predictive relationships are ephemeral, rising and falling with 252 

changing conditions. (Such relationships are variously described as “ephemeral”, “transient” or 253 

“mirage” relationships in the literature – Ye et al. 2015.) These patterns are often synchronous 254 

across multiple predictors, as with the strengthening of skill in the early 1990s for spring PDO, 255 

coastal water temperature, NPGO, and Logerwell spring transition, or the sudden loss of skill in 256 

2011 for biological indicators and NPGO (Figure 3); this is in part a consequence of the strong 257 

correlations among several of the indicators (e.g., Logerwell et al. 2003; Rupp et al. 2011), but 258 

also due to patterns in the survival time series (see Section 4.1.1). The ephemeral nature of some 259 

of these relationships has led to the history of abandoned forecast models for coastal coho 260 

salmon (Sect. 1.2), resulting in suboptimal harvest management for the years of transition 261 

between models. 262 
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 4.1.1  Statistical Mechanisms 263 

These sudden synchronous changes in skill have an obvious methodological explanation: abrupt 264 

changes in the distribution of the marine survival series that do or do not have corresponding 265 

changes in predictor time series. Examining the survival time series (Figure 1), the series is fairly 266 

stable in the 1960s to middle 1970s, when a decline sets in and continues through the early 267 

1980s. This is followed by a period of short-term variability that is ended by an abrupt decline in 268 

1990 to previously unobserved levels, which in turn is ended by an abrupt rise in survival in the 269 

late 1990s. Subsequently, there is another period of relative stability up until 2010, when there is 270 

a brief period of very high variability followed by a decline to relatively low survival at the end 271 

of the data. This is a richly-patterned time series, and none of the individual predictors examined 272 

here capture all these patterns.  273 

One can understand the problem by looking in detail at the predictor that performs the best 274 

(spring PDO) with a related one that captures only part of the pattern (autumn PDO). These are 275 

overplotted on the survival time series in Figure 5. Prior to 1980, there was limited variation in 276 

survival around a fairly constant mean, and neither seasonal PDO series had any skill in 277 

predicting these short-term fluctuations (Figure 3). (This should be expected, as the PDO reflects 278 

decadal-scale fluctuations.) Both series did capture the decline in survival around 1980 (the 279 

biggest signal in the series up to that time) and both retained moderate predictive skill until the 280 

next big change. The extremely low survivals of the middle 1990s provide the strongest signal in 281 

the entire survival time series, so no predictor that did not reflect that event could have strong 282 

skill subsequently. Spring PDO does reflect that event and autumn PDO does not; thus, one 283 

exhibits high skill for the remainder of the data series, and the other has essentially no skill after 284 
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1993. Similarly, Charleston water temperature, NPGO, and Logerwell spring transition all 285 

reflected this 1990s pattern to varying degrees, and all have moderate skill during and 286 

subsequent to the 1990s.  287 

 4.1.2  Ecological explanations 288 

The discussion above (Section 4.1.1) only relates to the mechanistic (statistical) explanations for 289 

indicator performance, and does not explain predictor performance in terms of causality, nor 290 

their predictive value in terms of likely future performance. There are a number of complications 291 

that could contribute to sudden changes in predictive relationships: complexity of the climate 292 

system, manifested as climate regime shifts, complexity of ecosystems, particularly in the form 293 

of ecosystem phase transitions, and complexity of the salmon life cycle. 294 

Climate regime shifts affecting fish populations have been identified throughout recent history 295 

(e.g., Francis and Hare 1994; Mantua et al. 1997). Three regime shifts in the north Pacific have 296 

been identified within the span of the OPIH coho data, in about 1976, 1989, and 1998 (Hare and 297 

Mantua 2000; Overland et al. 2008; Beaugrand et al. 2015), and these have been related to 298 

changes in Pacific salmon abundance, with different effects depending on species and region 299 

(Hare and Francis 1995; Beamish et al. 1998; Irvine and Fukuwaka 2011). While these shifts 300 

correlate with changes in abundance or productivity in many salmon stocks, there is no 301 

convincing evidence that shifts in multiple physical drivers would change the relationships 302 

between populations and those drivers, unless the effect is mediated through some associated 303 

change in ecosystem structure. 304 
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Complexities in ecosystems can lead to strongly non-linear dynamics of component populations, 305 

resulting in multiple stable states (phases) and potentially chaotic responses (Turchin and Taylor 306 

1992; Polis and Strong 1996). Duffy-Anderson et al. (2005) noted the interactions of climate, 307 

ecosystem structure, and fisheries in determining fish recruitment phase transitions, which may 308 

be initiated by climate regime shifts, but also can disrupt any relationship between recruitment 309 

and physical drivers. Thus, one might expect that in complex systems, simple relationships 310 

between drivers and recruitment would change over time, arising and falling as ecosystems 311 

restructure. 312 

Finally, the salmon life-cycle itself with short generations and strongly age-structured 313 

populations leads to complex population dynamics (Caswell et al. 1984; Worden et al. 2010). In 314 

particular, cohort resonance can either enhance or disrupt the response of populations to 315 

environmental drivers (Bjørnstad et al. 2004; Worden et al. 2010; Botsford et al. 2014). This in 316 

itself could cause apparent regression relationships between drivers and fish populations to 317 

appear and disappear through time. 318 

 4.2  Solutions 319 

Past approaches to EBFs, which sometimes amount to “fishing expeditions” for climate 320 

indicators to predict marine resources, not only don’t work, but produce results that mislead by 321 

yielding seemingly good predictive power that doesn’t hold up. In part, this can be attributed to 322 

poorly understood or poorly implemented statistical approaches for climate time series (von 323 

Storch 1999; DelSole and Shukla 2009; Ambaum 2010), but is also inherent in the complex 324 

dynamics of climate-driven ecosystems that may render accurate prediction of individual species 325 
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impossible (Roessig et al. 2004; Perry and McKinnell 2005). As we move into an era of more 326 

rapid physical and ecological changes, new techniques will be required. These must consider the 327 

transitory nature of short-term relationships that result from regime shifts and ecosystem phase 328 

transitions. Solutions might include developing better forecast models, identifying better 329 

indicators, and improving the harvest management system itself. 330 

 4.2.1  Better models? 331 

The simple single-factor regression EBF models used as an example here are no longer used in 332 

management forecasts – many improved approaches to forecasting have been tried over the past 333 

two decades. There are examples of multivariate linear or quasi-linear regression models 334 

(Logerwell et al. 2003), multivariate principal component and maximum covariance regression 335 

models (Burke et al. 2013), mixed stock-recruit-environment models (Haeseker et al. 2005; 336 

Haeseker et al. 2008), dynamic linear models (Scheuerell and Williams 2005), multi-model 337 

ensembles (Rupp et al. 2011), probabilistic networks (Malick et al. 2015), and empirical dynamic 338 

modeling (Ye et al. 2015). These and other approaches have been reviewed by Megrey et al. 339 

(2005) and McCormick and Falcy (2015). While many of these approaches do incorporate better 340 

methods for dealing with multivariate complexity in relationships, most do nothing to solve the 341 

problem of ephemeral relationships – so long as they are fitted with constant parameters to 342 

limited past data, they will still fail when causal effects shift. The possible exceptions are the 343 

dynamic models, which can explicitly incorporate statistical non-stationarity, allowing change in 344 

parameters and potentially change in importance of different environmental indicators through 345 

time. However, for multivariate models they are difficult to fit and have large parameter space, 346 
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so will generally have low forecast precision. It remains to be seen if this class of models can 347 

respond to rapid shifts in physical drivers or ecosystem phases.  348 

 4.2.2  Better indicators? 349 

Many promising environmental indicators for salmon have failed the test of time, often because 350 

they seem to be “one-trick ponies” that do well at predicting one period of population variation, 351 

but fail when a different pattern of variation emerges (Sect. 4.1.1). Of the indicators examined 352 

here, only the spring and summer PDO retained skill across multiple regime shifts, and even 353 

those series did not perform well for OPIH coho during the 1970s regime shift (although the 354 

PDO did correlate with changes for Alaska salmon for that period – Mantua et al. 1997).  355 

Indicator selection could be improved by a number of means. A primary goal should be to avoid 356 

the common statistical pitfalls that lead to overconfidence in predictive performance, including 357 

issues of serial correlation, multicolinearity, and short data series (e.g., von Storch 1999; DelSole 358 

and Shukla 2009). Multicolinearity can be addressed via standard multivariate statistical 359 

techniques and advanced multivariate regression techniques (Methratta and Link 2006; Burke et 360 

al. 2013). Van de Pol et al. (2016) suggest a systematic process for indicator selection that 361 

includes optimizing the time window for weather indicators relative to ecological responses. 362 

Still, improved statistical selection of indicators will not overcome the problem of ephemeral 363 

relationships, although this can be reduced by using only variables with a sufficiently long 364 

history to represent multiple climate regime shifts and/or ecosystem phase transitions.  365 
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 4.2.3  Better management? 366 

Improved models and improved indicators can only go so far in reducing prediction error, and 367 

are unlikely to completely prevent the sudden prediction failures that characterize salmon 368 

management. The best strategy would be to devise management systems that can deal with the 369 

uncertainties inherent in EBFs. A first step would be to evaluate the effects of forecast 370 

uncertainty on alternative management protocols through management strategy evaluations to 371 

ensure that forecasts have sufficient skill to support decision-making and that they actually 372 

improve management outcomes (economic value and/or conservation values) (Kaje and Huppert 373 

2007). Using such an approach, Rupp et al. (2012) determined that the current conservation-374 

oriented management strategy for Oregon coast natural coho salmon is much more robust to 375 

forecast errors than a traditional constant-escapement strategy. Another approach would be more 376 

wide-spread adoption of in-season forecast updates and adjustments to harvest levels. This 377 

method is used in a number of terminal and near-terminal salmon fisheries (notably for Bristol 378 

Bay Sockeye Salmon, Fraser River Sockeye Salmon and Columbia River Chinook Salmon), and, 379 

if well-implemented, can reduce the effects of poor pre-season forecasts (e.g., Holt and Peterman 380 

2008; Dorner et al. 2009). 381 

Beyond such technical fixes, entirely different management strategies may need to be considered 382 

that embrace, rather than suffer from, the uncertainties inherent in complex systems. As one 383 

study put it: “Once we free ourselves from the illusion that science or technology (if lavishly 384 

funded) can provide a solution to resource or conservation problems, appropriate action becomes 385 

possible” (Ludwig et al. 1993). Their list of strategies includes both robustness and active 386 

adaptive management: favor actions that are robust to uncertainties, favor actions that are 387 
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informative, probe and experiment, and favor actions that are reversible. If such robust strategies 388 

were to be adopted, it is possible that forecasting would not be important at all (Walters 1984).  389 

Over recent decades, there has been a shift in management focus for salmon from optimizing 390 

harvest (economic efficiency) to conservation management (protecting species and stocks at risk) 391 

and ecosystem services (leaving “surplus” for other benefits such as stream nutrients and 392 

providing food for orcas). So far, this has been accomplished by tweaking the traditional 393 

management models, or even by creating management exceptions for protected stocks. Perhaps it 394 

is time to abandon management systems dating from the time before the death of MSY (Larkin 395 

1977) and build new robust management management policies that embrace uncertainty and 396 

surprise in a balanced context of economic return and ecosystem conservation in the face of 397 

climate change. 398 

 4.3  Conclusions 399 

Predictive skill of EBF models can be ephemeral, arising and falling suddenly across time, and 400 

these patterns are often synchronous across multiple predictors. This behavior is an expected 401 

consequence of complex interactions between climate, ecosystems, and populations involving 402 

both climate regime shifts and ecosystem phase transitions. Forecast failures are problematic for 403 

traditional forecast-dependent harvest management approaches, and failures are inherent to 404 

traditional regression approaches when applied to complex dynamic systems. Solutions of this 405 

problem may include improved forecast models and improved climate and ecosystem indicators, 406 

but these improvements are unlikely to effectively account for climate and ecosystem shifts. 407 
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Developing management systems that are robust to forecast uncertainty would provide a more 408 

certain response to expected rapid ecosystem changes in response to climate. 409 

Bill Peterson and others pursued using biological indicators of lower trophic production as 410 

predictors of salmon growth and survival (Peterson et al. 2006; Brodeur et al. 2008; Peterson et 411 

al. 2011; Ruzicka et al. 2011; Daly et al. 2013). These indicators showed early promise as 412 

explanatory variables, but these predictive relationships failed in the last decade. This highlights 413 

the nature of predictive relationships in complex systems: even when predictors have a probable 414 

causal mechanism related to population dynamics they may not perform well in forecasting. In a 415 

complex system there are always multiple, linked causal pathways that may shift in importance 416 

over time. Causality is neither necessary nor sufficient for good prediction (Walters 1984). 417 

 5  Acknowledgments 418 

I thank Bill Peterson for many hallway discussions about correlation, causation, and statistics, 419 

and Dan Goodman and Jim Overland for encouragement and analytic suggestions early in the 420 

development of this work. I thank two anonymous reviewers who suggested valuable 421 

improvements to the manuscript. Initial work was conducted at the NOAA Northwest Fisheries 422 

Science Center, with support from the NOAA Coastal Ocean Program as part of the US 423 

GLOBEC Northeast Pacific Program and the NOAA Fisheries and the Environment Program 424 

(grant numbers FATE-06-10 & FATE-09-10). 425 



 22 

 6  ReferencesAmbaum, M. H. P. 2010. Significance tests in 426 

climate science. J. Clim. 23:5927–5932. 427 

American Meteorological Society. 2019. Glossary of Meteorology. American Meteorological 428 

Society. Online at https://www.ametsoc.org/index.cfm/ams/publications/glossary-of-429 

meteorology/ [accessed 11 April 2019]. 430 

Anderson, J. J. 2000. Decadal climate cycles and declining Columbia River salmon. In E. E. 431 

Knudsen, C. R. Steward, L. L. McDonald, J. E. Williams, and D. W. Reiser (eds.), 432 

Sustainable Fisheries Management: Pacific Salmon, pp. 467–484. Lewis Publishers, Boca 433 

Raton. 434 

Bakun, A. 1973. Coastal upwelling indices, west coast of North America, 1946-71. NOAA 435 

Technical Report NMFS SSRF-671. U.S. Department of Commerce, National Oceanic 436 

and Atmospheric Administration. 437 

Beamish, R. J., and Bouillon, D. R. 1993. Pacific salmon production trends in relation to climate. 438 

Can. J. Fish. Aquat. Sci. 50:1002–1016. 439 

Beamish, R., Noakes, D., McFarlane, G., and King, J. 1998. The regime concept and recent 440 

changes in Pacific salmon abundance. In K. Myers (ed.), Workshop on climate change 441 

and salmon production, Vancouver, March 26-27, 1998 (NPAFC Technical Report 1), pp. 442 

1–3. North Pacific Anadromous Fisheries Commission, Vancouver, BC, Canada. 443 

Beaugrand, G., Conversi, A., Chiba, S., Edwards, M., Fonda-Umani, S., Greene, C., Mantua, N., 444 

Otto, S. A., Reid, P. C., Stachura, M. M., Stemmann, L., and Sugisaki, H. 2015. 445 



 23 

Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. 446 

Soc. B Biol. Sci. 370:20130272. 447 

Bjørnstad, O. N., Nisbet, R. M., and Fromentin, J.-M. 2004. Trends and cohort resonant effects 448 

in age-structured populations. J. Anim. Ecol. 73:1157–1167. 449 

Borra, S., and Di Ciaccio, A. 2010. Measuring the prediction error. A comparison of cross-450 

validation, bootstrap and covariance penalty methods. Comput. Stat. Data Anal. 54:2976–451 

2989. 452 

Botsford, L. W., Holland, M. D., Field, J. C., and Hastings, A. 2014. Cohort resonance: a 453 

significant component of fluctuations in recruitment, egg production and catch of fished 454 

populations. ICES J. Mar. Sci. 71:2158–2170. 455 

Botsford, L. W., and Lawrence, C. A. 2002. Patterns of co-variability among California Current 456 

Chinook salmon, coho salmon, Dungeness crab, and physical oceanographic conditions. 457 

Prog. Oceanogr. 53:283–305. 458 

Brander, K. 2015. Improving the reliability of fishery predictions under climate change. Curr. 459 

Clim. Change Rep. 1:40–48. 460 

Brodeur, R. D., Peterson, W. T., Auth, T. D., Soulen, H. L., Parnel, M. M., and Emerson, A. A. 461 

2008. Abundance and diversity of coastal fish larvae as indicators of recent changes in 462 

ocean and climate conditions in the Oregon upwelling zone. Mar. Ecol. Prog. Ser. 463 

366:187–202. 464 



 24 

Burke, B. J., Peterson, W. T., Beckman, B. R., Morgan, C., Daly, E. A., and Litz, M. 2013. 465 

Multivariate models of adult Pacific salmon returns. PLoS ONE 8:e54134 466 

(doi:10.1371/journal.pone.0054134). 467 

Caswell, H., Naiman, R. J., and Morin, R. 1984. Evaluating the consequences of reproduction in 468 

complex salmonid life cycles. Aquaculture 43:123–134. 469 

Climate Prediction Center. 2019. Oceanic Niǹo Index. Online at 470 

https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt [accessed 3 April 2019]. 471 

Cole, J. 2000. Coastal sea surface temperature and coho salmon production off the north-west 472 

United States. Fish. Oceanogr. 9:1–16. 473 

Cury, P. M., and Christensen, V. 2005. Quantitative ecosystem indicators for fisheries 474 

management. Introduction. ICES J. Mar. Sci. 62:307–310. 475 

Daly, E. A., Auth, T. D., Brodeur, R. D., and Peterson, W. T. 2013. Winter ichthyoplankton 476 

biomass as a predictor of early summer prey fields and survival of juvenile salmon in the 477 

northern California Current. Mar. Ecol. Prog. Ser. 484:203–217. 478 

Daskalov, G. M., Grishin, A. N., Rodionov, S., and Mihneva, V. 2007. Trophic cascades triggered 479 

by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of 480 

the National Academy of Sciences of the United States of America 104:10518–10523. 481 

DelSole, T., and Shukla, J. 2009. Artificial skill due to predictor screening. J. Clim. 22:331–345. 482 

Di Lorenzo, E. 2019. North Pacific Gyre Oscillation. Online at http://o3d.org/npgo/npgo.php 483 

[accessed 3 April 2019]. 484 



 25 

Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chlak, K., Miller, A. J., 485 

McWilliams, J. C., Bograd, S. J., Arango, H., Curchister, E., Powell, T. M., and Rivière, 486 

P. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. 487 

Geophys. Res. Lett. 35:doi:10.1029/2007GL032838. 488 

Dorner, B., Peterman, R. M., and Su, Z. 2009. Evaluation of performance of alternative 489 

management models of Pacific salmon (Oncorhynchus spp.) in the presence of climatic 490 

change and outcome uncertainty using Monte Carlo simulations. Can. J. Fish. Aquat. Sci. 491 

66:2199–2221. 492 

Duffy-Anderson, J. T., Bailey, K., Ciannelli, L., Cury, P., Belgrano, A., and Stenseth, N. C. 2005. 493 

Phase transitions in marine fish recruitment processes. Ecol. Complex. 2:205–218. 494 

Francis, R. C., and Hare, S. R. 1994. Decadal scale regime shifts in the large marine ecosystems 495 

of the North-east Pacific: a case for historical science. Fish. Oceanogr. 3:279–291. 496 

Gunsolus, R. T. 1978. The status of Oregon coho and recommendations for managing the 497 

production, harvest, and escapement of wild and hatchery-reared stocks. Oregon 498 

Department of Fish and Wildlife, Columbia Region, Portland, Oregon. Online at 499 

library.state.or.us/repository/2009/200911181500583/index.pdf [accessed 25 April 2019]. 500 

Haeseker, S. L., Peterman, R. M., and Su, Z. 2008. Retrospective evaluation of preseason 501 

forecasting models for sockeye and chum salmon. North Am. J. Fish. Manag. 28:12–29. 502 

Haeseker, S. L., Peterman, R. M., Su, Z., and Wood, C. C. 2005. Retrospective evaluation of 503 

preseason forecasting models for pink salmon. North Am. J. Fish. Manag. 25:897–918. 504 



 26 

Hare, S. R., and Francis, R. C. 1995. Climate change and salmon production in the Northeast 505 

Pacific Ocean. In R. J. Beamish (ed.), Climate change and northern fish populations. 506 

Canadian Special Publication of Fisheries and Aquatic Sciences 121, pp. 357–372. NRC 507 

Research Press, Ottawa. 508 

Hare, S. R., and Mantua, N. J. 2000. Empirical evidence for North Pacific regime shifts in 1977 509 

and 1989. Prog. Oceanogr. 47:103–145. 510 

Holt, C. A., and Peterman, R. M. 2008. Uncertainties in population dynamics and outcomes of 511 

regulations in sockeye salmon (Oncorhynchus nerka) fisheries: implications for 512 

management. Can. J. Fish. Aquat. Sci. 65:1459–1474. 513 

Holtby, L. B., and Scrivener, J. C. 1989. Observed and simulated effects of climatic variability, 514 

clear-cut logging and fishing on the numbers of chum salmon Oncorhynchus keta and 515 

coho salmon Oncorhynchus kisutch returning to Carnation Creek, British Columbia. Can. 516 

Spec. Publ. Fish. Aquat. Sci. 105:62–81. 517 

Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. 518 

ICES J. Mar. Sci. J. Cons. 68:1122–1130. 519 

Jennings, S. 2005. Indicators to support an ecosystem approach to fisheries. Fish Fish. 6:212–520 

232. 521 

Joh, Y., and Di Lorenzo, E. 2017. Increasing Coupling Between NPGO and PDO Leads to 522 

Prolonged Marine Heatwaves in the Northeast Pacific. Geophysical Research Letters 523 

44:11,663-11,671. 524 



 27 

Kaje, J. H., and Huppert, D. D. 2007. The value of short-run climate forecasts in managing the 525 

coastal coho salmon (Oncorhynchus kisutch) fishery in Washington State. Nat. Resour. 526 

Model. 20:321–349. 527 

Kilduff, D. P., Di Lorenzo, E., Botsford, L. W., and Teo, S. L. H. 2015. Changing central Pacific 528 

El Niños reduce stability of North American salmon survival rates. PNAS 201503190. 529 

Kimura, D. K. 1988. Analyzing relative abundance indices with log-linear models. N. Am. J. 530 

Fish. Manag. 8:175–180. 531 

Koslow, J. A., Hobday, A. J., and Boehlert, G. W. 2002. Climate variability and marine survival 532 

of coho salmon (Oncorhynchus kisutch) in the Oregon production area. Fish. Oceanogr. 11:65–533 

77. 534 

Kousky, V. E., and Higgins, R. W. 2007. An alert classification system for monitoring and 535 

assessing the ENSO cycle. Weather Forecast. 22:353–371. 536 

Larkin, P. A. 1977. An Epitaph for the Concept of Maximum Sustained Yield. Trans. Am. Fish. 537 

Soc. 106:1–11. 538 

Lawson, P. W., Logerwell, E. A., Mantua, N. J., Francis, R. C., and Agostini, V. N. 2004. 539 

Environmental factors influencing freshwater survival and smolt production in Pacific 540 

Northwest coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 61:360–373. 541 

Litzow, M. A., Ciannelli, L., Puerta, P., Wettstein, J. J., Rykaczewski, R. R., and Opiekun, M. 542 

2019. Nonstationary environmental and community relationships in the North Pacific 543 

Ocean. Ecology 100:e02760. 544 



 28 

Logerwell, E. A., Mantua, N., Lawson, P. W., Francis, R. C., and Agostini, V. N. 2003. Tracking 545 

environmental processes in the coastal zone for understanding and predicting Oregon 546 

coho (Oncorhynchus kisutch) marine survival. Fish. Oceanogr. 12:554–568. 547 

Ludwig, D., Hilborn, R., and Walters, C. 1993. Uncertainty, resource exploitation, and 548 

conservation: lessons from history. Science 260:17,36. 549 

Malick, M. J., Cox, S. P., Peterman, R. M., Wainwright, T. C., and Peterson, W. T. 2015. 550 

Accounting for multiple pathways in the connections among climate variability, ocean 551 

processes, and coho salmon recruitment in the Northern California Current. Can. J. Fish. 552 

Aquat. Sci. 72:1552–1564. 553 

Mantua, N. J. 2019. The Pacific Decadal Oscillation (PDO). Online at 554 

http://research.jisao.washington.edu/pdo [accessed 3 April 2019]. 555 

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. 1997. A Pacific 556 

interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. 557 

Soc. 78:1069–1079. 558 

McCormick, J. L., and Falcy, M. R. 2015. Evaluation of non-traditional modelling techniques for 559 

forecasting salmon returns. Fish. Manag. Ecol. [Early View]:n/a-n/a. 560 

McGie, A. M. 1984. Evidence for density-dependence among coho salmon in the Oregon 561 

Production Area. In W. G. Pearcy (ed.), The influence of ocean conditions on the 562 

production of salmonids in the north Pacific. A workshop, November 8-10, 1983, 563 

Newport, Oregon, pp. 37–49. Oregon State University Sea Grant College Program, 564 

Corvallis. 565 



 29 

Megrey, B. A., Lee, Y.-W., and Macklin, S. A. 2005. Comparative analysis of statistical tools to 566 

identify recruitment-environment relationships and forecast recruitment strength. ICES J. 567 

Mar. Sci. 62:1256–1269. 568 

Methratta, E. T., and Link, J. S. 2006. Evaluation of quantitative indicators for marine fish 569 

communities. Ecol. Indic. 6:575–588. 570 

National Oceanic and Atmospheric Administration. 2019a. NOAA Tides & Currents, Charleston, 571 

Oregon. Online at https://tidesandcurrents.noaa.gov/stationhome.html?id=9432780 572 

[accessed 3 April 2019]. 573 

National Oceanic and Atmospheric Administration. 2019b. National Data Buoy Center. Online at 574 

https://www.ndbc.noaa.gov/ [accessed 3 April 2019]. 575 

Nickelson, T. E. 1983. The influence of ocean conditions on abundance of coho salmon 576 

(Oncorhynchus kisutch) in the Oregon Production Area. Information Report (Fish) 83–6. 577 

Oregon Department of Fish and Wildlife, Corvallis, Oregon. Online at 578 

https://nrimp.dfw.state.or.us/CRL/Reports/Info/83-6.pdf [accessed 18 March 2015]. 579 

Nickelson, T. E. 1986. Influences of upwelling, ocean temperature, and smolt abundance on 580 

marine survival of coho salmon (Oncorhynchus kisutch) in the Oregon production area. 581 

Can. J. Fish. Aquat. Sci. 43:527–535. 582 

Northwest Fisheries Science Center. 2019. Outlook of adult returns for coho and Chinook 583 

Salmon. Online at https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/g-584 

forecast.cfm [accessed 3 April 2019]. 585 



 30 

Overland, J., Rodionov, S., Minobe, S., and Bond, N. 2008. North Pacific regime shifts: 586 

Definitions, issues and recent transitions. Prog. Oceanogr. 77:92–102. 587 

Pacific Fisheries Environmental Laboratory. 2019. North Pacific Upwelling Indices. Online at 588 

https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_downloa589 

d.html [accessed 4 April 2019]. 590 

Pacific Fishery Management Council (PFMC). 2004. Preseason report I: Stock abundance 591 

analysis for 2004 ocean salmon fisheries. Portland, Oregon. Pacific Fishery Management 592 

Council. 593 

Pacific Fishery Management Council (PFMC). 2010. Preseason report I: Stock abundance 594 

analysis and environmental assessment part 1 for 2010 ocean salmon fishery regulations. 595 

Pacific Fishery Management Council, Portland, Oregon. 596 

Pacific Fishery Management Council (PFMC). 2012. Pacific Coast salmon fishery management 597 

plan for commercial and recreational salmon fisheries off the coasts of Washington, 598 

Oregon and California as revised through Amendment 16. Pacific Fishery Management 599 

Council, Portland, Oregon. 600 

Pacific Fishery Management Council (PFMC). 2019. Preseason report I: Stock abundance 601 

analysis and environmental assessment part 1 for 2019 ocean salmon fishery regulations. 602 

Pacific Fishery Management Council, Portland, Oregon.  603 

Pearcy, W. G. 1992. Ocean ecology of North Pacific salmonids. Washington Sea Grant Program, 604 

University of Washington Press, Seattle. 605 



 31 

Pearcy, W. G. 1997. Salmon production in changing ocean domains. In D. J. Stouder, P. A. 606 

Bisson, and R. J. Naiman (eds.), Pacific Salmon and their Ecosystems: Status and Future 607 

Options, pp. 331–352. Chapman & Hall, New York. 608 

Perry, R. I., and McKinnell, S. 2005. Marine life in the North Pacific Ocean: the known, the 609 

unknown, and the unknowable. PICES Special Publication 2. (R. I. Perry and S. 610 

McKinnell, eds.). North Pacific Marine Science Organization, Victoria, BC. 611 

Peterson, W. T., and Burke, B. J. 2013. Oceanographic and ecological indicators for salmon 612 

returns in the northern California Current. North Pac. Anadromous Fish Comm. Tech. 613 

Rep. 9:71–75. 614 

Peterson, W. T., Fisher, J. L., Peterson, J. O., Morgan, C. A., Burke, B. J., and Fresh, K. L. 2014. 615 

Applied fisheries oceanography: Ecosystem indicators of ocean conditions inform 616 

fisheries management in the California Current. Oceanography 27:80–89. 617 

Peterson, W. T., Hooff, R. C., Morgan, C. A., Hunter, K. L., Casillas, E., and Ferguson, J. W. 618 

2006. Ocean conditions and salmon survival in the northern California Current. National 619 

Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Newport 620 

Research Station 2032 S Marine Science Drive Newport, Oregon 97365. Online at 621 

https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/documents/oeip-622 

archive-2006-peterson.et.al.2006.pdf [accessed 22 January 2019]. 623 

Peterson, W. T., Morgan, C. A., Casillas, E., Peterson, J. O., Fisher, J. L., and Ferguson, J. W. 624 

2011. Ocean ecosystem indicators of salmon marine survival in the northern California 625 

Current. White paper January 2011. NOAA Northwest Fisheries Science Center. Online 626 



 32 

at http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/documents/oeip-archive-2010-627 

peterson.et.al.2011.pdf. 628 

Peterson, W. T., and Schwing, F. B. 2003. A new climate regime in Northeast Pacific ecosystems. 629 

Geophys. Res. Let. 30:doi:10.1029/2003GL017528. 630 

Polis, G. A., and Strong, D. R. 1996. Food web complexity and community dynamics. Am. Nat. 631 

147:813–846. 632 

R Development Core Team. 2013. R: A Language and environment for statistical computing. R 633 

Foundation for Statistical Computing, Vienna, Austria. Online at http://www.R-634 

project.org [accessed 14 April 2013]. 635 

Ricker, W. E. 1954. Stock and recruitment. J. Fish. Res. Board Can. 11:559–623. 636 

Roessig, J. M., Woodley, C. M., Cech, J. J., and Hansen, L. J. 2004. Effects of global climate 637 

change on marine and estuarine fishes and fisheries. Rev. Fish Biol. Fish. 14:251–275. 638 

Rupp, D. E., Wainwright, T. C., and Lawson, P. W. 2012. Effect of forecast skill on management 639 

of the Oregon Coast coho salmon (Oncorhynchus kisutch) fishery. Can. J. Fish. Aquat. 640 

Sci. 69:1016–1032. 641 

Rupp, D. E., Wainwright, T. C., Lawson, P. W., and Peterson, W. T. 2011. Marine environment-642 

based forecasting of coho salmon (Oncorhynchus kisutch) adult recruitment. Fish. 643 

Oceanogr. 21:1-19 [Corrected vol. 21:226-227]. 644 

Ruzicka, J. J., Wainwright, T. C., and Peterson, W. T. 2011. A model-based meso-zooplankton 645 

production index and its relation to the ocean survival of juvenile coho (Oncorhynchus 646 

kisutch). Fish. Oceanogr. 20:544–559. 647 



 33 

Scarnecchia, D. L. 1981. Effects of streamflow and upwelling on yields of wild coho salmon 648 

(Oncorhynchus kisutch) in Oregon. Can. J. Fish. Aquat. Sci. 38:471–475. 649 

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van 650 

Ness, E. H., Rietkerk, M., and Sugihara, G. 2009. Early-warning signals for critical 651 

transitions. Nature 461:53–59. 652 

Scheuerell, M. D., and Williams, J. G. 2005. Forecasting climate-induced changes in the survival 653 

of Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha). Fish. 654 

Oceanogr. 14:448–457. 655 

Schwing, F. B., Jiang, J., and Mendelssohn, R. 2003. Coherency of multi-scale abrupt changes 656 

between the NAO, NPI, and PDO. Geophysical Research Letters 657 

30:doi:10.1029/2002GL016535. 658 

Sydeman, W. J., Santora, J. A., Thompson, S. A., Marinovic, B., and Di Lorenzo, E. 2013. 659 

Increasing variance in North Pacific climate relates to unprecedented ecosystem 660 

variability off California. Glob Change Biol 19:1662–1675. 661 

Turchin, P., and Taylor, A. 1992. Complex dynamics in ecological time series. Ecology 73:289–662 

305. 663 

van de Pol, M., Bailey, L. D., McLean, N., Rijsdijk, L., Lawson, C. R., and Brouwer, L. 2016. 664 

Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 665 

7:1246–1257. 666 



 34 

von Storch, H. 1999. Misuses of statistical analysis in climate research. In H. von Storch and A. 667 

Navarra (eds.), Analysis of climate variability: applications of statistical techniques, 2nd 668 

edition, pp. 11–26. Springer, New York. 669 

Walters, C. J. 1984. Managing Fisheries under Biological Uncertainty. In R. M. May (ed.), 670 

Exploitation of Marine Communities, Dahlem Workshop Report, pp. 263–274. Springer 671 

Berlin Heidelberg. 672 

Walters, C. J. 1987. Nonstationarity of production relationships in exploited populations. Can. J. 673 

Fish. Aquat. Sci. 44:s156–s165. 674 

Worden, L., Botsford, L. W., Hastings, A., and Holland, M. D. 2010. Frequency responses of 675 

age-structured populations: Pacific salmon as an example. Theor. Popul. Biol. 78:239–676 

249. 677 

Ye, H., Beamish, R. J., Glaser, S. M., Grant, S. C. H., Hsieh, C., Richards, L. J., Schnute, J. T., 678 

and Sugihara, G. 2015. Equation-free mechanistic ecosystem forecasting using empirical 679 

dynamic modeling. Proc. Natl. Acad. Sci. 112:E1569–E1576. 680 













Table for PROOCE_2019_180.  



Table 1. Data series used in the analysis. 

Data Series Abbreviation Frequency Years Source 

Salmon Survival 

Oregon Production Index Hatchery 

Coho Salmon Marine Survival Index 

OPIH.SRV Annual 1960-2018 Calculated using data from (McGie 

1984; PFMC 2004; PFMC 2019) 

Regional Physics 

Pacific Decadal Oscillation PDO.mmm* Seasonal 1960-2018 (Mantua 2019) 

Oceanic Niño Index ONI.mmm Seasonal 1960-2018 (Climate Prediction Center 2019) 

North Pacific Gyre Oscillation NPG.mmm Seasonal 1960-2018 (Di Lorenzo 2019) 

Local Physics 

Coastal Water Temperature at 

Charleston, Oregon 

CWT.mmm Seasonal 1966-2018 Calculated using data from (National 

Oceanic and Atmospheric 

Administration 2019a; National 

Oceanic and Atmospheric 

Administration 2019b) 

Upwelling Index, 45°N UWI.mmm Seasonal 1967-2018 (Pacific Fisheries Environmental 

Laboratory 2019) 

Upwelling Spring Transition SPT.LGR Annual 1969-2018 (Logerwell et al. 2003; PFMC 2019) 

Deep Temperature at Stonewall 

Bank (C, May-Sep average) 

TMP.DP Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Deep Salinity at Stonewall Bank 

(psu, May-Sep average) 

SAL.DP Annual 1998-2018 (Northwest Fisheries Science Center, 

2019) 

Ecosystem Indicators 

Copepod Richness Anomaly (no. 

species, May-Sep average) 

COP.RCH Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Northern Copepod Anomaly (mg C 

m-3; May-Sept) 
COP.NAN Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Southern Copepod Anomaly (mg C 

m-3; May-Sept) 
COP.SAN Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Biological Spring Transition (day of 

year) 

SPT.BIO Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Ichthyoplankton Biomass Index 

(Jan-Mar) 

ICH.BIO Annual 1998-2018 (Northwest Fisheries Science Center 

2019) 

Ichthyoplankton Community 

Composition Index (Jan-Mar) 

ICH.COM Annual 1998-2018 (Northwest Fisheries Science Center, 

2019) 

*’mmm’ represents an abbreviation of the months included in the seasonal mean: ‘JFM’ for January-February-March, 

‘AMJ’ for April-May-June, ‘JAS’ for July-August-September, and ‘OND’ for October-November-December. 

 




